Abstract

AbstractA mathematical analysis for the pulse responses of a liquid chromatographic column packed with crystal powders having a particle size distribution and a nonlinear adsorption isotherm is presented. The mathematical model is solved numerically by the orthogonal collocation method. Based on the parametric analysis of the model, the effects of a symmetrical and moderately asymmetric PSD on the LC responses are shown to be negligible in comparison with the effects of other parameters, such as isotherm nonlinearity, whose effects are much more profound. The simulated responses are compared with the experimental response data for an LC column packed with silicalite crystals, and a good agreement is found between the theoretical and experimental results. Using the nonlinear LC model, the simultaneous determination of nonlinear adsorption isotherms and intraparticle diffusivities from LC pulse responses is demonstrated for liquids in porous adsorbents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call