Abstract
Genes necessary for the survival or reproduction of a cell are an attractive class of antibiotic targets. Studying essential genes by classical genetics, however, is inherently problematic because it is impossible to knock them out. Here, we screened a set of predicted essential genes for growth inhibition using CRISPR-interference (CRISPRi) knockdown in the human pathogen Vibrio cholerae We demonstrate that CRISPRi knockdown of 37 predicted essential genes inhibits V. cholerae viability, thus validating the products of these genes as potential drug target candidates. V. cholerae was particularly vulnerable to lethal inhibition of the system for lipoprotein transport (Lol), a central hub for directing lipoproteins from the inner to the outer membrane (OM), with many of these lipoproteins coordinating their own essential processes. Lol depletion makes cells prone to plasmolysis and elaborate membrane reorganization, during which the periplasm extrudes into a mega outer membrane vesicle or "MOMV" encased by OM which dynamically emerges specifically at plasmolysis sites. Our work identifies the Lol system as an ideal drug target, whose inhibition could deplete gram-negative bacteria of numerous proteins that reside in the periplasm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.