Abstract

We analyzed the linear energy transfer (LET; energy deposited onto the target per unit length) effects on the scintillation properties of Bi4Ge3O12 (BGO) with an emphasis on the dynamical aspect. We irradiated BGO with 20MeVH±, 50MeVHe±, and 220MeV C5+. We observed that the rise and the decay of the scintillation temporal profiles are faster at higher LET. The faster decay at higher LET is attributed to the competition between the radiative transition of self-trapped excitons (STEs) localized at Bi3+ ions and the quenching caused by the interaction between STEs. The faster rise can be explained in terms of the competition between the quenching caused by the interaction between excited states and the formation of the STEs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.