Abstract

Light propagation in arrays of AlxGa1-xAs waveguides is studied. The power coupling constant between two adjacent waveguides is precisely measured as waveguide material and structure is varied. Aluminum concentration contrast between waveguide core/cladding layers and waveguide width/height produce an asymmetric effective refractive index between linearly polarized modes, which in turn causes a polarization dependence of the coupling constants. Experimental measurement results agree well with an analytical model. The sensitivity of coupling constant to the waveguide parameters is analyzed. Through a careful geometric design, comparable coupling constants can be achieved in three waveguide arrays with different structure. Similar formation processes of discrete spatial optical solitons are observed respectively, confirming that the parameterization in the discrete nonlinear Schrödinger equation characterizes waveguide arrays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call