Abstract

Austenite and ferrite lattice parameters were monitored using X-ray diffraction subsequent to deformation in uniaxial and biaxial tension and plane straining of a 0.19C-1.63Si-1.59Mn transformation-induced plasticity (TRIP) sheet steel. Details from peak position results suggest the presence of stacking faults in the austenite phase, especially after deformation in uniaxial tension. The results also indicate residual stress or composition effects (through changes in the average carbon concentration due to selective transformation of lower carbon regions of austenite). Compressive residual stresses in the ferrite matrix were measured, and found to increase with increasing effective strain in specimens tested in biaxial tension and plane strain. Strain partitioning between softer ferrite and harder austenite (and possibly bainite or martensite) may be responsible for these residual compressive stresses in the ferrite, although volume expansion from the γ → α′ transformation and texture gradients through the sheet thickness are also possible contributors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call