Abstract

With the development of MEMS technology to the nanometer scale, the influence of different process conditions on the performance of nano-devices can be calculated through the microscopic changes of materials. During the manufacturing process, the large residual stress from the film stack significantly influences the performance of devices, thereby reducing the wafer yield. Herein, we apply density functional theory to MEMS processes to reveal the intrinsic mechanism of how residual stress affects the performance of aluminum nitride-based bulk acoustic wave (BAW) resonators on an 8-inch high-resistance silicon wafer. The variation rule of physical properties of piezoelectric material aluminum nitride with different residual stresses is calculated via first-principles calculations. Through theory formula derivation, the piezoelectric-coupling constant (Kt2) of the bulk acoustic wave resonator is positively correlated with tensile residual stress, and the resonant frequency (fp, fs) is negatively correlated with tensile residual stress. The measurement results show that the average shifts of Keff2 is 0.12 % within −137 MPa and 183 Mpa residual stress, which is an excellent match with the theory prediction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call