Abstract
The laser welding of dissimilar materials poses several challenges in practical applications, such as molten pool instability, the formation of intermetallic compounds (IMCs), and cracking caused by differential thermal stresses. In this study, we investigated the impact of incorporating a nickel (Ni) foil as an intermediate layer on lap joints of dissimilar materials (SS304 and Al6061) welded using the continuous laser welding (CLW) technique. The thermomechanical simulation accurately predicted the width and depth of SS304–Ni–Al6061 joints, with deviations of merely 3.92% and 19.04% from experimental results, respectively. Residual stress analysis revealed that the addition of a nickel foil reduced residual stress in the heat-affected zone (HAZ) and improved joint fatigue life. Furthermore, the incorporation of 0.1 and 0.2 mm Ni foils enhanced joint strength and effectively suppressed the formation of brittle intermetallic compounds, resulting in a remarkable maximum lap shear force of up to 1026 N. The simulation results for the shear load-displacement curve displayed excellent agreement with experimental data, with a deviation of only 6%. Notably, joints with the Ni foil demonstrated a greater ability to prevent crack formation caused by thermal expansion mismatch compared to joints without the Ni foil. The Ni interlayer served as a diffusion barrier and stress buffer, promoting a more uniform microstructure and reducing the likelihood of crack formation in bonded materials. Overall, this study comprehensively investigates the impact of incorporating a nickel interlayer on laser-welded lap joints of dissimilar materials. The findings offer valuable insights for practical applications, enabling improved joint strength, reliability, and crack resistance in laser welding dissimilar materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.