Abstract

All-optical packet switching can overcome limitations of electronic switches in terms of power consumption, speed, cost, and footprint. Switch architectures combining wavelength converters and fiber delay lines provide tunable routing and contention resolution when used with an N×N arrayed waveguide grating (AWG), a key passive optical component to bypass electronic processing limitations. An AWG passively routes either single or multiple input port wavelengths to output ports. A single wavelength per port strategy reduces crosstalk within the AWG, but drastically increases the dimensionality of the device. AWG design constraints due to bandwidth limitations and fabrication processes limit the port number for the foreseeable future to under 100. In order to scale optical switches to emerging network requirements, we must use multiple wavelengths per port. In this paper, we examine several optical router architectures for data center applications using multiple wavelengths per port, and quantify the physical layer impairments. We consider not only the AWG crosstalk, but also Q-factor degradation caused by the multiple wavelength conversions occurring when a packet is buffered for contention resolution. We present the results as a function of the number of recirculations for on–off-keying (OOK) signal formats. While previous work has addressed this issue in terms of accumulated loss, we focus on accumulated intensity noise due to crosstalk and amplified spontaneous emission (ASE). We compare the routing performance of each architecture, and we point out that the AWG crosstalk and accumulated ASE noise during packet recirculation are both critical to the routing performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.