Abstract

Along with the rapid development of autonomous driving technology, autonomous vehicles are showing a trend of practicality and popularity. Autonomous vehicles perceive environmental information through sensors to provide a basis for the decision making of vehicles. Based on this, this paper investigates the lane-changing decision-making behavior of autonomous vehicles. First, the similarity between autonomous vehicles and moving molecules is sought based on a system-similarity analysis. The microscopic lane-changing behavior of vehicles is analyzed by the molecular-dynamics theory. Based on the objective quantification of the lane-changing intention, the interaction potential is further introduced to establish the molecular-dynamics lane-changing model. Second, the relationship between the lane-changing initial time and lane-changing completed time, and the dynamic influencing factors of the lane changing, were systematically analyzed to explore the influence of the microscopic lane-changing behavior on the macroscopic traffic flow. Finally, the SL2015 lane-changing model was compared with the molecular-dynamics lane-changing model using the SUMO platform. SUMO is an open-source and multimodal traffic experimental platform that can realize and evaluate traffic research. The results show that the speed fluctuation of autonomous vehicles under the molecular-dynamics lane-changing model was reduced by 15.45%, and the number of passed vehicles was increased by 5.93%, on average, which means that it has better safety, stability, and efficiency. The molecular-dynamics lane-changing model of autonomous vehicles takes into account the dynamic factors in the traffic scene, and it reasonably shows the characteristics of the lane-changing behavior for autonomous vehicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.