Abstract

This paper presents a simple and effective formulation based on Isogeometric Analysis (IGA) and Higher-order Shear Deformation Theory (HSDT) to investigate static, free vibration and dynamic control of piezoelectric composite plates integrated with sensors and actuators. In the composite plates, the mechanical displacement field is approximated according to the HSDT model using isogeometric elements based on Non-Uniform Rational B-Spline (NURBS) basis functions. These achieve naturally any desired degree of continuity through the choice of the interpolation order, so that the method easily fulfills the C1-continuity requirement of the HSDT model. The electric potential is assumed to vary linearly through the thickness for each piezoelectric sublayer. A displacement and velocity feedback control algorithm is used for the active control of the static deflection and of the dynamic response of the plates through a closed-loop control with bonded or embedded distributed piezoelectric sensors and actuators. The accuracy and reliability of the proposed method is verified by comparing its numerical predictions with those of other available numerical approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.