Abstract

A numerical solution, for incompressible, steady-state, laminar flow heat transfer in the combined entrance region of a circular tube is presented for the case of constant wall heat flux and constant wall temperature. The development of velocity profile is obtained from Sparrow's entrance region solution. This velocity distribution is used in solving the energy equation numerically to obtain temperature profiles. Variation of the heat transfer coefficient for these two different boundary conditions for the early stages of boundary layer formation on the pipe wall is obtained. Local Nusselt numbers are calculated and the results are compared with those given byUlrichson andSchmitz. The effect of the thermal boundary conditions is studied by comparing the uniform wall heat flux results with uniform wall temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call