Abstract
Breast cancer is one of the most common cancers found worldwide and most frequently found in women. An early detection of breast cancer provides the possibility of its cure; therefore, a large number of studies are currently going on to identify methods that can detect breast cancer in its early stages. This study was aimed to find the effects of k-means clustering algorithm with different computation measures like centroid, distance, split method, epoch, attribute, and iteration and to carefully consider and identify the combination of measures that has potential of highly accurate clustering accuracy. K-means algorithm was used to evaluate the impact of clustering using centroid initialization, distance measures, and split methods. The experiments were performed using breast cancer Wisconsin (BCW) diagnostic dataset. Foggy and random centroids were used for the centroid initialization. In foggy centroid, based on random values, the first centroid was calculated. For random centroid, the initial centroid was considered as (0, 0). The results were obtained by employing k-means algorithm and are discussed with different cases considering variable parameters. The calculations were based on the centroid (foggy/random), distance (Euclidean/Manhattan/Pearson), split (simple/variance), threshold (constant epoch/same centroid), attribute (2-9), and iteration (4-10). Approximately, 92% average positive prediction accuracy was obtained with this approach. Better results were found for the same centroid and the highest variance. The results achieved using Euclidean and Manhattan were better than the Pearson correlation. The findings of this work provided extensive understanding of the computational parameters that can be used with k-means. The results indicated that k-means has a potential to classify BCW dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Computer Assisted Radiology and Surgery
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.