Abstract

Corn defense systems against insect herbivory involve activation of genes that lead to metabolic reconfigurations to produce toxic compounds, proteinase inhibitors, oxidative enzymes, and behavior-modifying volatiles. Similar responses occur when the plant is exposed to methyl jasmonate (MeJA). To compare the defense responses between stalk borer feeding and exogenous MeJA on a transcriptional level, we employed deep transcriptome sequencing methods following Ostrinia furnacalis leaf feeding and MeJA leaf treatment. 39,636 genes were found to be differentially expressed with O. furnacalis feeding, MeJA application, and O. furnacalis feeding and MeJA application. Following Gene Ontology enrichment analysis of the up- or down- regulated genes, many were implicated in metabolic processes, stimuli-responsive catalytic activity, and transfer activity. Fifteen genes that indicated significant changes in the O. furnacalis feeding group: LOX1, ASN1, eIF3, DXS, AOS, TIM, LOX5, BBTI2, BBTI11, BBTI12, BBTI13, Cl-1B, TPS10, DOX, and A20/AN1 were found to almost all be involved in jasmonate defense signaling pathways. All of the data demonstrate that the jasmonate defense signal pathway is a major defense signaling pathways of Asian corn borer’s defense against insect herbivory. The transcriptome data are publically available at NCBI SRA: SRS965087.

Highlights

  • An infestation can lead to 10%~30% crop yield loss[2]

  • Plants respond to exogenous methyl jasmonate (MeJA) with a myriad of inducible defense responses including the production of toxic metabolites and anti-digestive proteins which harm feeding insects

  • The aims of the current work was to investigate the similarities and differences between Asian corn borer feeding and methyl jasmonate induction, to explore the synergistic or anatagonistic effects between them, and to find which defense mechanisms are more important during plant defense response

Read more

Summary

Introduction

An infestation can lead to 10%~30% crop yield loss[2]. In corn (Zea mays) lines, thicker cell walls, higher xylose and diferulate (plant cell wall cross-linkers) concentrations, and internode length correlate with constitutive resistance to stalk borers[3,4], though an earlier study indicates that stronger structural traits may not necessarily confer resistance[5]. Such induced responses in corn have been identified by several microarray, qRT-PCR, and metabolite assays These studies find that certain types of genes and regulatory elements are up-regulated after insect herbivory: transcription factors[7,8], defensive protein production (including anti-disgestives and chitinases)[1,7], ethylene (ET), and jasmonic acid (JA) perception, regulation and biosynthesis[7,9], and terpenoid phytoalexins synthesis[10]. Plants respond to exogenous methyl jasmonate (MeJA) with a myriad of inducible defense responses including the production of toxic metabolites and anti-digestive proteins which harm feeding insects. These similarities to defense responses against insect herbivory make it possible to stimulate plant resistance before insect attack. We report a comprehensive transcriptome profiling analysis of inducible defense genes involved in response to MeJA, Asian corn borer attack, and MeJA and Asian corn borer attack, to identify transcript modification which may affect protein accumulation

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call