Abstract

A selected ion flow tube mass spectrometry (SIFT-MS) study of the reactions of H3O+, NO+ and O2+* ions with the ketones (M) 2-heptanone, 2-octanone, 2-nonanone, 2-undecanone and 2-aminoacetophenone has been conducted in preparation for studies of volatile emissions from bacteria. The H3O+ reactions all proceed rapidly via exothermic proton transfer, producing only MH+ ions that form their monohydrates when water vapour is present in the helium carrier gas. The O2+* reactions proceed rapidly via dissociative charge transfer producing parent cations M+* and some fragment ions. The NO+ reactions form the NO+M adduct ions at rates which are dependent on the pressure of the helium carrier gas. Combining the present NO+ kinetic data with those available from previous SIFT studies, the phenomenon of charge transfer complexing is clearly demonstrated. This results in adduct formation in these NO+/ketone reactions at or near the collisional rate. SIFT-MS spectra are presented to illustrate the simplicity of SIFT-MS analysis of ketones using both H3O+ and NO+ precursor ions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call