Abstract

Neurosteroids are important signalling molecules that modulate neuronal activity. Their low concentrations and low volatility make neurosteroid detection and quantification by ambient mass spectrometry challenging. Here we develop a reactive low-temperature plasma mass spectrometry (LTP-MS) method and demonstrate its potential for fast screening and quantification of neurosteroids in mouse brain. Ketone-based neurosteroids were analysed with the LTP-MS method. The plasma of the LTP was heated in order to improve the desorption efficiency of low-volatility neurosteroids. Methylamine with a concentration of 500 ppbv was employed as the reactive reagent. Neurosteroids in mouse brain tissue extracts were detected in 70s with mass errors less than ±3ppm due to coupling of the ion source with a high-performance mass spectrometer. Reaction between neurosteroids and methylamine, seeded into the LTP gas stream, resulted in the formation of protonated methylamine-neurosteroid adducts with 5- to 100-fold abundances, compared to [M+H]+ ions detected in non-reactive LTP-MS. The lowest detectable concentrations of neurosteroid standards were in the range of ng/mL. Concentrations of neurosteroids in male and female mouse brain extracts as determined with reactive LTP-MS were on the level of ng/g, comparable to results obtained with high-performance liquid chromatography-tandem mass spectrometry. The developed reactive LTP-MS is capable of providing sensitive identification and quantification of ketone-based neurosteroids in mouse brain extracts with minimal sample treatment, and showcases the potential of reactive LTP-MS as a tool for fast screening of neurosteroid levels in brain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.