Abstract

We study Kapitza-Dirac diffraction of a Bose-Einstein condensate from a standing light wave for a square pulse with variable pulse length but constant pulse area. We find that for sufficiently weak pulses, the usual analytical short-pulse prediction for the Raman-Nath regime continues to hold for longer times, albeit with a reduction of the apparent modulation depth of the standing wave. We quantitatively relate this effect to the Fourier width of the pulse, and draw analogies to the Rabi dynamics of a coupled two-state system. Our findings, combined with numerical modeling for stronger pulses, are of practical interest for the calibration of optical lattices in ultracold atomic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.