Abstract

The dynamic post-translational modifications of histones play important roles in the regulation of transcription in animals. The demethylation of N(ε)-methyl lysine residues in the N-terminal tail of histone H3 is catalyzed by demethylases, of which the largest family is the ferrous iron and 2-oxoglutarate dependent demethylases (JmjC KDMs), which catalyze demethylation via initial hydroxylation of the N-methyl groups. We report studies on the conformational requirements of the JmjC KDM substrates using N-methylated lysine analogues prepared by metathesis reactions of suitably protected N-allylglycine. The results support the proposed requirement for a positively charged N(ε)-amino group in JmjC KDM catalysis. Demethylation of a trans-C-4/C-5 dehydrolysine substrate analogue was observed with representative KDM4 subfamily members KDM4A, KDM4B and KDM4E, and KDM7B, which are predicted, based on crystallographic analyses, to bind the N(ε)-methylated lysine residue in different conformations during catalysis. This information may be useful in the design of JmjC KDM selective inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call