Abstract

The ITER magnet system contains stored energy, 41 GJ in the toroidal field system and up to ~10 GJ in the poloidal field (PF)/central solenoid system during plasma operation. A quench in the ITER magnet is regarded as a normal event, and the ITER magnet system has a redundant quench detection system and a reliable fast discharge system in order to achieve low probability of unmitigated quench and its propagation in the ITER magnet system. An electrical circuit model is developed by using a circuit simulator in order to estimate the arc power during fault conditions. The ANSYS 3-D model of the magnet, including electrical, thermal, and arcing inside the coil, is being constructed to analyze the thermal and electrical behavior of the magnet in an unmitigated quench. In this paper, thermal analyses of the fault condition related to the PF coil and impacts to the vacuum vessel are reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.