Abstract

Iridoid glycosides are an important class of natural products and have many biological activities. Iridoid glucosides in an extract of the plant species Paederia scandens were investigated using reversed-phase high performance liquid chromatography and electrospray quadrupole time-of-flight-type tandem mass spectrometry. The elemental composition of most of the compounds was determined by accurate mass and relative isotopic abundance (RIA) measurements. In positive ion mode, the fragmentation of [M+NH4](+) precursor ions was carried out using low energy collision-induced electrospray ionization tandem spectrometry. The neutral losses of NH3, H2O, Glc, and the side chain of the iridoid moiety were the main fragmentation patterns observed. For simple iridoid glycosides, the main differences were related to the side chains. Fragmentation of the [M-H](-)precursor ions was achieved for the compounds possibly having phenolic acid group. The connection order of the iridoid, sugar, and phenolic acid moieties, and the linkage of the 6-OH group of the sugar to the phenolic acid were unambiguously confirmed using a combination of MS/MS spectra in both positive and negative ion modes, and our previous work. For some trace dimeric iridoid glucosides, the connection order between the asperuloside and paederoside moieties was determined by the characteristic product ions; this was supported by D-labeling experiments. A total of 24 iridoid glucosides, including 14 new species, were identified or tentatively characterized based on exact mass, RIA values, tandem mass spectra, and D-labeling experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.