Abstract

Ionization and recombination processes accompanying collisions of free electrons with plasma ions are considered using a statistical atomic model in which ionization and recombination are regarded as the processes of pair electron collisions in the electron gas of an atom. An expression for the ionization rate as a function of the ionization energy I and temperature T is derived. According to this expression, the ionization rate at I ≫ T is proportional to exp(−I/T). The statistical atomic model provides an estimate of the recombination rate for an ion with an arbitrary nuclear charge number Z, whereas more exact calculations of the recombination rate can be performed only for large Z. The model explains relatively low values of I/T (as compared to those given by the Saha equation) under the coronal equilibrium conditions and predicts a reduction in I/T with increasing Z. The values of I/T and the average ion charge number obtained from the balance equation for multielectron ions with the use of one fitting coefficient agree with the tabulated data calculated in the multilevel coronal model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.