Abstract

Homogenous charge compression ignition (HCCI) combustion is a low temperature combustion process which combines high combustion efficiency with ultra-low [Formula: see text] raw emissions. Steep increases of the in-cylinder pressure and unstable combustion sequences at the limits of the operating range can damage the engine and limit the use of HCCI to part load operation. This can be done using closed loop combustion control based on combustion parameters like the indicated mean effective pressure and the combustion phasing. Since in-cylinder pressure sensors are expensive components and therefore not suitable for series application, ion current sensors can be used as an additional source of information about the combustion. Combustion analysis using methods similar to those used in pressure based measurements can be implemented using an online analysis of the ion current signal. In this study, the ion current sensor will be examined for its suitability for combustion control under HCCI conditions with lean air/fuel ratios and high compression ratios. Research has found that the ion current signal is strongly depended on the boundary conditions. Especially the air/fuel ratio which plays an important role for signal strength during the combustion process. When using valve timings with negative valve overlap in combination with a fuel pre-injection, a further peak of the ion current signal close to the gas exchange top dead center can be found in addition to the one during combustion. At the same time, it is hard to extract information from the cylinder pressure signal during NVO. Under lean conditions this peak even exceeds the signal during combustion. This study analyzes the ion current signal during NVO and its potential to be used for future combustion control concepts. The ion current signal shows potential to stabilize HCCI combustion at high loads. However, the prediction of late combustion cycles is still challenging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call