Abstract

Evaluation of the fluid flow pattern in a non-pregnant uterus is important for understanding embryo transport in the uterus. Fertilization occurs in the fallopian tube and the embryo (fertilized ovum) enters the uterine cavity within 3 days of ovulation. In the uterus, the embryo is conveyed by the uterine fluid for another 3 to 4 days to a successful implantation site at the upper part of the uterus. Fluid movements within the uterus may be induced by several mechanisms, but they seem to be dominated by myometrial contractions. Intra-uterine fluid transport in a sagittal cross-section of the uterus was simulated by a model of wall-induced fluid motion within a two-dimensional channel. The time-dependent fluid pattern was studied by employing the lubrication theory. A comprehensive analysis of peristaltic transport resulting from symmetric and asymmetric contractions is presented for various displacement waves on the channel walls. The results provide information on the flow field and possible trajectories by which an embryo may be transported before implantation at the uterine wall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call