Abstract

A transient, non-dilute finite element model is employed to study a novel, interrupted growth strategy which has been employed for the unseeded, vertical Bridgman growth of cadmium telluride. Computations clearly show the time-dependent translation strategy causes solute diffusion layers in the melt to successively grow and die in time, thus providing a means to mix the cadmium rejected at the growth interface into the bulk. This strategy stabilizes the solid-liquid interface by delaying the onset of constitutional supercooling, thus allowing the use of growth rates for grain selection which are higher than would be possible using continuous translation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.