Abstract

In order to investigate the internal flow characteristics and hydraulic stability of vertical submersible pump station in forward and reverse operation, the steady and unsteady three-dimensional numerical simulation of vertical submersible axial-flow pump device was carried out based on CFD and the energy performance of the pump device was predicted. In this paper, the internal flow characteristics of the vertical submersible axial-flow pump device under forward and reverse operation were analyzed, and the optimization of the structure passed by water was carried out to improve the efficiency of the pump device in forward and reverse operation. The results show that the performance of the pump device is good when it is running in the forward direction, the peak efficiency of the pump device is 72.22% and the corresponding head is 4.01 m. When it is running in the reverse direction, the performance of the pump device decreases significantly with the peak efficiency is only 36.03% and the corresponding head is 3.34 m. The hydraulic loss in the dust-pan-shaped conduit is very small in the forward operation, the wellbore conduit is the main factor which affects the efficiency of the submersible axial flow pump device, the loss ratio is 12%–44%. When the pump device is in reverse operation, the hydraulic loss is similar but the hydraulic performance is poor and the hydraulic loss is obviously larger than that in forward operation. A guide plate is added to the dust-pan-shaped conduit at 0.27 D ( D is the nominal diameter of impeller) along the axis direction of the conduit, and a elbow flow conduit with the corner radius R of 0.83 D is selected to replace the wellbore conduit, the bad flow state disappeared and the efficiency of the pump device increased by 5.19% in the forward operation while the efficiency of the pump device increased by 9.62% in the reverse operation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.