Abstract
Several methods were developed in the past to analyze interferograms produced by optical coherence tomography, and successfully applied to simulated or animated samples. However, these techniques do not cope with noisy and distorted interferograms from biological tissues. In this paper, known techniques, including the fast Fourier transform and several variations of the continuous wavelet transform, were employed to analyze the interferogram data. However, to cope with the difficulties in biological data, pre- and post-processing procedures and adaptive thresholding were developed to provide stability and robustness. Additionally, three-dimensional structural models of the biological samples were constructed, and revealed information like the number and locations of interfaces, the layer thickness and pattern, and abnormalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.