Abstract
A quasi-zero-average-index photonic crystal structure has been recently demonstrated by using the concept of complementary media. It consists of dielectric photonic crystal superlattices with alternating layers of negative index photonic crystals and positive index dielectric media. This photonic crystal structure has unique optical properties, such as phase-invariant field and self-collimation of light. In particular, the nanofabricated superlattices can be used in chip-scale optical interconnects and interferometers with quasi-zero-average phase difference. However, in potential interconnect applications, crosstalk between neighboring signals needs to be avoided. In this article, we study simulations of the interference of propagating electromagnetic waves in a quasi-zero electric permittivity photonic crystal superlattice. The simulations here are restricted to TM modes, with the main electric field along the vertical direction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.