Abstract

We present a numerical analysis of the average intercore crosstalk (IC-XT) of wavelength-division multiplexed (WDM) optical channels in a homogeneous two-core fiber system. This analysis is performed considering cores with zero-dispersion wavelengths at 1550 nm. In the analysis, we consider 11 WDM channels spaced 100 GHz apart transmitted in three different schemes, one centered at 1510 nm with negative dispersion D = − 3.5 ps / nm · km, one centered at 1550 nm with D = 0, and one centered at 1590 nm with D = + 3.5 ps / nm · km. This selection allows for the observation of how the IC-XT of WDM channels is modified using positive, zero, and negative dispersion parameters. To analyze more realistic scenarios of IC-XT in multicore fibers, we considered random bending and twisting perturbations along the fiber. In addition, we considered fiber nonlinearities such as four-wave mixing (FWM) among WDM channels. The results show that FWM produces a power transfer among the transmitted WDM channels that depends on the dispersion parameter D at core 1, and this effect is transferred to the average crosstalk of the WDM channels at core 2. Therefore, the average IC-XT of WDM channels can be modified in a controlled way by selecting an adequate dispersion parameter D in combination with FWM nonlinearity. These results provide valuable information for understanding the wavelength dependence of the average IC-XT of homogeneous multichannel MCF systems working around a zero-dispersion wavelength.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.