Abstract

A rigorous analytical method is presented for calculating the interaction factor between two identical piles subjected to vertical loads. Following the technique proposed by Muki and Sternberg, the problem is decomposed into an extended soil mass and two fictitious piles characterized respectively by Young’s modulus of the soil and that of the difference between the pile and soil. The unknown axial forces along fictitious piles are determined by solving a Fredholm integral equation of the second kind, which imposes the compatibility condition that the axial strains of the fictitious piles are equal to those corresponding to the centroidal axes of the extended soil. The real pile forces and displacements can subequally be calculated based on the determined fictitious pile forces, and finally, the desired pile interaction factors may be obtained. Results confirm the validity of the proposed approach and portray the influence of the governing parameters on the pile interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.