Abstract

This paper deals with an interaction problem of arbitrarily distributed elliptical inclusions under longitudinal shear loading. The problem is formulated as a system of singular integral equations with Cauchy-type or logarithmic-type singularities, where unknown functions are the densities of body forces distributed in the longitudinal directions of infinite bodies having the same elastic constants as those of the matrix and the inclusions. In order to satisfy the boundary conditions along the inclusions, four kinds of new fundamental density functions are applied. Then the body force densities are approximated by a linear combination of the fundamental density functions and polynomials. The calculations are carried out for several arrangement of the inclusions, and it is found that the present method yields rapidly converging numerical results for arbitrarily distributed elliptical inclusions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.