Abstract

This paper is aimed to investigate the operating characteristics of a static synchronous compensator (STATCOM) integrated with superconducting magnetic energy storage (SMES) for high power applications in the transmission network level. The STATCOM controller topology comprises multi-level multi-pulse neutral-point clamped-type (NPC) voltage source inverters (VSIs) using the harmonics cancellation technique, and incorporates a SMES coil. An innovative two-quadrant multi-level dc–dc converter is proposed to effectively interface the STATCOM with the superconducting coil using a buck-boost topology with neutral point voltage control capabilities; thus enabling to simultaneously control both active and reactive power exchange with the high voltage power system. A detailed analysis of major system variables is presented, including analytical results and digital simulations using the MATLAB/Simulink environment. Moreover, a three-level control scheme is designed, including a full decoupled current control strategy in the d– q reference frame with a novel controller to prevent the STATCOM dc bus capacitors voltage drift/imbalance and an enhanced power system frequency controller.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call