Abstract
There is a growing interest for applications of heat and mass transfer in microchannels. Consequently, several numerical and experimental studies related to transport phenomena in microchannels have been carried-out. The flow problem in microchannels is different from the macro-scale problems due to rarefaction effects, surface roughness, viscous dissipation heating as well as other effects. As a result, a number of studies have been proposed for investigating the micro-flow problem and how each of these phenomena affect heat and mass transfer characteristics. Naturally, there is particular focus on how the observed micro-scale phenomena differ from the traditionally known macro-scale effects. In the realm of simulation studies for heat transfer in micro-sized channels, this paper proposes a comparison between hybrid solution strategies for solving steady heat transfer problems within microchannels. The Generalized Integral Transform Technique (GITT) is employed as the main solution methodology; however, different solution approaches are investigated in order to determine advantages and drawbacks of each alternative. The presented results can serve as guidance for choosing an optimum solution methodology for thermally developing heat transfer in microchannels using GITT implementations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.