Abstract

BackgroundMice with genetic deficiencies in adaptive immunity are used for the grafting of human cells or pathogens, to study human diseases, however, the innate immune responses to xenografts in these mice has received little attention. Using the NOD/SCID Plasmodium falciparum mouse model an analysis of innate defences responsible for the substantial control of P. falciparum which remains in such mice, was performed.MethodsNOD/SCID mice undergoing an immunomodulatory protocol that includes, clodronate-loaded liposomes to deplete macrophages and an anti-polymorphonuclear leukocytes antibody, were grafted with human red blood cells and P. falciparum. The systematic and kinetic analysis of the remaining innate immune responses included the number and phenotype of peripheral blood leukocytes as well as inflammatory cytokines/chemokines released in periphery. The innate responses towards the murine parasite Plasmodium yoelii were used as a control.ResultsResults show that 1) P. falciparum induces a strong inflammation characterized by an increase in circulating leukocytes and the release of inflammatory cytokines; 2) in contrast, the rodent parasite P. yoelii, induces a far more moderate inflammation; 3) human red blood cells and the anti-inflammatory agents employed induce low-grade inflammation; and 4) macrophages seem to bear the most critical function in controlling P. falciparum survival in those mice, whereas polymorphonuclear and NK cells have only a minor role.ConclusionsDespite the use of an immunomodulatory treatment, immunodeficient NOD/SCID mice are still able to mount substantial innate responses that seem to be correlated with parasite clearance. Those results bring new insights on the ability of innate immunity from immunodeficient mice to control xenografts of cells of human origin and human pathogens.

Highlights

  • Mice with genetic deficiencies in adaptive immunity are used for the grafting of human cells or pathogens, to study human diseases, the innate immune responses to xenografts in these mice has received little attention

  • After excluding a potential toxicity of mouse serum by in vitro methods, [3], it was hypothesized that innate immune defences could constitute the main limiting factor in parasite survival, and this was confirmed by employing agents able to control macrophages (MP) and other cells involved in innate defences [4,5]

  • Following a single infection by P. falciparum, 17% of mice remained parasitologically negative, 34% showed a transient parasitaemia lasting for ca. 12 days post-infection, 12% showed a stable parasitaemia for more than 20 days and 37% showed an almost total parasite clearance from peripheral blood, followed by a re-emergence a few days later, without new parasite inoculation, i.e. a second wave of parasitaemia lasting for the life-span of the animal

Read more

Summary

Introduction

Mice with genetic deficiencies in adaptive immunity are used for the grafting of human cells or pathogens, to study human diseases, the innate immune responses to xenografts in these mice has received little attention. Using the NOD/SCID Plasmodium falciparum mouse model an analysis of innate defences responsible for the substantial control of P. falciparum which remains in such mice, was performed. Various strains of mice having a genetic deficiency in cells responsible for adaptive immunity (i.e. T and B lymphocytes) have been selected, which have been used for the grafting of xenogenic cells, those of a human origin. The initial report that bovine red blood cells (RBC) injected intra-peritoneally in SCID mice could cross the peritoneum and colonize the peripheral blood [2] was an incentive to repeat the experiment using human red blood cells (HuRBC). The model was improved by moving from the original SCID mouse to the NIHIII (Beige Xid Nude) mouse, to the NOD/SCID mouse that have more defective innate immunity, and by identifying two components which, when combined, allowed to obtain a stable P. falciparum parasitaemia in some of the NOD/SCID mice [6] (namely: liposomes encapsulating dichloromethylenediphosphonate, named clo-lip [5] and a monoclonal antibody (NIMP-14) [4] directed to mouse polymorphonuclear cells (PMN))

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call