Abstract
The mathematical and simulation models of working head in the deep-sea working environment were built to analyze the effects of cutter-suction flow, cutter-head rotating speed, cutting depth and suction port position on the cutter-suction capacity. The efficiency of the cutter-suction is analyzed based on the analysis of the variation law of the solid-phase volume fraction of the flow field, the variation law of the velocity distribution in the flow field and the distribution law of the solid-phase concentration. The results show that the increase of cutter-suction flow can significantly improve the cutter-suction efficiency when it is less than 1000 m3/h. However, when it is more than 1000 m3/h, it is helpless. When the cutter-head rotate speed is within the range of 10–25 r/min, the cutter-suction efficiency stabilizes at about 95%. While the speed is greater than 25 r/min, the cutter-suction efficiency decreases sharply with the increase of cutter-head rotate speed. With the increase of cutting depth, the cutter-suction efficiency first increases and then remains stable and finally decreases. The cutter-suction efficiency remains at about 94% when the suction port position deviation ranges from 0° to 30°, but it has a sharply reduction when the deviation angle is more than 30°.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.