Abstract

The coal walls in a caving face with a tall mining height are prone to rib spalling, which leads to the phased cessation of the mining of the working face, causes heavy losses, and endangers the safety of underground workers. In order to prevent serious rib spalling accidents of coal walls in fully mechanized caving faces with a large mining height and to improve the prediction of and ability to control rib spalling, a load-bearing mechanical model of the roof–coal wall–support system was established based on the moment-balance relationship. The expressions for the deformation and stress distribution in a coal wall were calculated. Then, the influences of key factors on the horizontal displacement of the coal wall were investigated. A numerical simulation model of the working face was established, and an orthogonal test design was introduced. On this basis, the influences of four factors: cutting height, breaking position of the main roof, support strength, and sidewall protecting force of the support on the horizontal displacement and volume of a plastic zone of coal wall, were analyzed. Moreover, their order of importance was ranked on the basis of sensitivity. Based on the engineering conditions and production practices in the Cuncaota II Coal Mine, key parameters for controlling and measures for preventing the rib spalling of the coal wall are proposed to guide practical actions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call