Abstract

Pixel-wise coded exposure (PCE) imaging based on digital micromirror device (DMD) is an advanced high-speed imaging technology, which can realize the high-speed imaging by using a low-frame-rate camera. During exposure time, the multi-frame image information of a dynamic object can be integrated into one encoded image, and then the multi-frame sub-exposure images can be extracted by the post-processing algorithm. Therefore, the accurate pixel-to-pixel alignment between the DMD and the camera is the key step to realize PCE imaging, which has drawn much attention from researchers. So their studies mainly focused on how to achieve accurate pixel matching. However, the resolution of the relay imaging lens, as another important influence factor of PCE imaging, also has a significant influence on the imaging results, but few people have studied and analyzed it. To solve this problem, in this work, we theoretically analyze the influence of the resolution of the relay imaging system on the reconstructed decoded images, and verifies the theoretical analysis through simulation and imaging experiments. On this basis, a PCE imaging system is built, and a point spread function (PSF) estimation method of relay lens based on the fringe phase is proposed. Furthermore, a Richard-Lucy deconvolution algorithm is introduced into the reconstruction process of coded image to effectively improve the quality of PCE imaging, which is of great significance in developing the PCE imaging technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.