Abstract

Today radio based wireless communication technologies offer limited performance, whereas optical wireless com- munication systems (OWC) propose potentially a high performant, scalable communication system conforming to real time conditions. However, current studies imply, that OWCs still lack the necessary performance and robustness level for most wireless applications in industrial production environments. In this approach several types of noises for free-space optical communication systems are empirically analysed in an accredited, exemplary industrial production environment. While the channel noise is usually modelled by the signal to noise ratio it is found that real environments cannot be approximated by the usual static additive white gaussian noise. In this approach the accumulated measurement data represents the spectrum variation of different locations and times relating to different types of noise sources. The implementation in a total channel model allows the optimization of OWC designs like the channel access scheme or the modulation type concerning performance and robustness. Furthermore an additional measurement setup is proposed, capable of measuring and classifying existing noise sources in order to serve the design of OWC systems in industrial production environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.