Abstract
The 5th Generation (5G) wireless networks are envisioned to support emerging bandwidth-hungry applications. Millimeter wave (mmWave) communication has been considered as a promising solution for future capacity crunch due to large available bandwidth. However, an outdoor macrocellular layer lacks the capability of providing an adequate coverage to indoor users, especially at higher frequencies i.e. 28 GHz. Therefore, the provision of high data rates and high system capacity in an indoor environment requires a separate indoor solution. The main target of this paper is to analyze the performance of Ultra Dense Network (UDN) and Distributed Antenna System (DAS) deployment in an indoor (university office) environment at 1.8 GHz, 2.6 GHz, 3.5 GHz and 28 GHz frequency. This research work is conducted by performing a ray tracing simulation using a three dimensional floor plan. The obtained results show that the existing indoor solutions which are in operation at 2.6 GHz can be reused at 3.5 GHz frequency with minor power adjustment, or by using antennas with little higher gain. However, the operation at 28 GHz requires a new plan for providing good indoor coverage. Acquired results show that DAS improves the cell capacity by reducing the interference. However, the UDN provides a higher system capacity due to more number of cells. The real gain of operation at 28 GHz can only be achieved by using larger system bandwidth e.g 200 MHz band.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.