Abstract

From late 1999 to early March 2000, measurements of particle number (particles 0.01-20 microm in aerodynamic diameter) concentrations were made inside of a townhouse occupied by two non-smoking adults and located in Reston, VA (approximately 25 miles northwest of Washington, DC). The particle size measurements were made using an SMPS and an APS as well as a Climet optical scattering instrument. In this study, positive matrix factorization (PMF) was used to study the indoor particle size distributions. The size distributions or profiles obtained were identified by relating the obtained source contributions to the source information provided by the occupants. Nine particle sources were identified, including two sources associated with gas burner use: boiling water and frying tortillas. Boiling water for tea or coffee was found to be associated only with the smallest particles, with a number mode close to the detection limit of the SMPS (i.e., 0.01 microm). Frying tortillas produced particles with a number mode at about 0.09 microm while broiling fish produced particles with a number mode at about 0.05 microm. A citronella candle was often burned during the study period, and this practice was found to produce a 0.2-microm modal number distribution. Other indoor particle sources identified included sweeping/vacuuming (volume mode at 2 microm); use of the electric toaster oven (number mode at 0.03 microm); and pouring of kitty litter (volume mode over 10 microm). Two outdoor sources were also resolved: traffic (number mode at about 0.15 microm) and wood smoke (major number mode at about 0.07 microm). The volume distributions showed presence of coarse particles in most of the resolved indoor sources probably caused by personal cloud emissions as the residents performed the various indoor activities. This study has shown that continuous measurements of indoor particle number and volume concentrations together with records of personal activities are useful for indoor source apportionment models. Each of the particle sources identified in this study produces distinct size distributions that may be useful in studying the mortality and morbidity effects of airborne particulate matter because they will have different penetrability and deposition patterns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call