Abstract

A two-pulse laser-excited atomic fluorescence (LEAF) technique at 193 nm wavelength was applied to the analysis of indium tin oxide (ITO) layer on polyethylene terephthalate (PET) film. Fluorescence emissions from analytes were induced from plumes generated by first laser pulse. Using this approach, non-selective LEAF can be accomplished for simultaneous multi-element analysis and it overcomes the handicap of strict requirement for laser excitation wavelength. In this study, experimental conditions including laser fluences, times for gating and time delay between pulses were optimized to reveal high sensitivity with minimal sample destruction and penetration. With weak laser fluences of 100 and 125 mJ/cm2 for 355 and 193 nm pulses, detection limits were estimated to be 0.10% and 0.43% for Sn and In, respectively. In addition, the relation between fluorescence emissions and number of laser shots was investigated; reproducible results were obtained for Sn and In. It shows the feasibility of depth profiling by this technique. Morphologies of samples were characterized at various laser fluences and number of shots to examine the accurate penetration. Images of craters were also investigated using scanning electron microscopy (SEM). The results demonstrate the imperceptible destructiveness of film after laser shot. With such weak laser fluences and minimal destructiveness, this LEAF technique is suitable for thin-film analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.