Abstract

Abstract This work defines a model to predict the characteristics of materials processed using reactive spray atomization and deposition. The materials considered are aluminum alloys while target dispersoids are primarily oxides. These may be obtained by the reaction of oxygen-containing atomization gas mixtures with molten alloy droplets. Droplet position and velocity histories are obtained from the numerical solution of the one-dimensional equation of motion. The energy equation inside the droplet is solved numerically using finite differences to predict the spatially resolved temperature field. The solid/liquid interface progression rate is estimated using a power law while an oxidation rate expression based on the Mott-Cabrera theory is used for the oxide thickness. Such a model should prove very valuable in determining the parameters controlling the volume fraction and the size distribution of the dispersoids for various systems. [S0022-1481(00)02901-7]

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.