Abstract

As quantum key distribution becomes a mature technology, it appears clearly that some assumptions made in the security proofs cannot be justified in practical implementations. This might open the door to possible side-channel attacks. We examine several discrepancies between theoretical models and experimental setups in the case of continuous-variable quantum key distribution. We study in particular the impact of an imperfect modulation on the security of Gaussian protocols and show that approximating the theoretical Gaussian modulation with a discrete one is sufficient in practice. We also address the issue of properly calibrating the detection setup, and in particular the value of the shot noise. Finally, we consider the influence of phase noise in the preparation stage of the protocol and argue that taking this noise into account can improve the secret key rate because this source of noise is not controlled by the eavesdropper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.