Abstract
Studies indicate that the statistical properties and temporal structure of the sound signal are important in determining the extent of hearing hazard. As part of a pilot study to examine hearing conservation program effectiveness, NIOSH collected noise samples of impact noise sources in an automobile stamping plant, focusing on jobs with peak sound levels (Lpk) of greater than 120 dB. Digital tape recordings of sounds were collected using a Type I Precision Sound Level Meter and microphone connected to a DAT tape recorder. The events were archived and processed as .wav files to extract single events of interest on CD-R media and CD audio media. A preliminary analysis of sample wavelet files was conducted to characterize each event using metrics such as the number of impulses per unit time, the repetition rate or temporal pattern of these impulses, index of peakedness, crest factor, kurtosis, coefficient of kurtosis, rise time, fall time, and peak time. The spectrum, duration, and inverse of duration for each waveform were also computed. Finally, the data were evaluated with the Auditory Hazard Assessment Algorithm (AHAAH). Improvements to data collection for a future study examining different strategies for evaluating industrial noise exposure will be discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.