Abstract

Immobilization of enzymes is important and widely applied in biocatalysis. Streptomyces platensis gene gox, encoding an extracellular L-glutamate oxidase (Gox), was fused to cellulose binding domain (CBDcex) from Cellulomonas fimi and the recombinant protein Gox-CBD was expressed in Escherichia coli. The fusion protein (Gox-CBD) was immobilized onto microcrystalline cellulose. The preparation conditions, binding capacity, properties and stability of the immobilized enzyme were studied. Under the condition of 4 ℃, for 1 hour, the fusion protein Gox-CBD was able to bind microcrystalline cellulose at a ratio of 9.0 mg of protein per gram of microcrystalline cellulose. Enzymatic properties of free and immobilized L-glutamic oxidase (Gox-CBD) were compared. The specific activity of the immobilized enzyme decreased, but its thermal stability increased a lot compared with that of the free Gox-CBD. After incubation at 60 ℃ for 30 min, 70% of the total activity remained whereas the free recombinant Gox completely lost its activity. The immobilized protein was tightly bound to microcrystalline cellulose at pH below 10 or more than 5 mmol/L NaCl. The fusion protein of Gox-CBD can be specifically immobilized on the microcrystalline cellulose on a single step. Therefore, our findings can provide a novel strategy for protein purification and enzyme immobilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call