Abstract

Abstract Current–voltage characteristics of ZnO/CdS/CuGaSe 2 single crystal solar cells measured at room temperature are investigated depending on illumination intensity. The characteristics can be described using the two-diode model, indicating two current transport mechanisms acting in the cells. The first and dominant mechanism is recombination of carriers at the interface between CdS and CuGaSe 2 . The second one is recombination in the depletion region, which has been found to have a small effect on the solar cell photovoltaic performance. Both the diode ideality factor and the saturation current density of the dominant diode increase under illumination. A model based on interface recombination can explain these results. This model allows the estimation of diffusion voltage, capture cross-section of holes at the interface and mobility of electrons in the CdS layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.