Abstract

Balancing with the influence coefficient method can eliminate rotor unbalance effectively and briefly which usually causes mechanical vibration. But the accuracy of this method is susceptible to operating condition and the structure of mechanical equipments will leads to unstable equilibrium outcomes. The theoretical study of the influence coefficient balancing method can find that the solution process of balancing weight does not involve the mechanical nature of unbalance vibration, and therefore it will be subject to greater interference of equation’s ill-conditioned characteristics. By introducing the modal superposition, vibration mode function can be linked with the influence coefficients to establish the relationship between counter weight location parameters and ill-conditioned equations. The simulation results of multiple-blade rotor shows that positions of balancing weight will exert great influence on ill-conditioned characteristics. So the position parameters should be chosen in front of balancing service reasonably.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.