Abstract

In switched reluctance motors, rotor position information can be extracted from the measurement of position-dependent phase voltage resonances. Due to hysteresis in the magnetic core of the machine, subsequently triggered resonances can exhibit different resonance waveforms, even when the rotor is held at a constant angular position. In order to analyze the influence of hysteresis, a finite-difference model of a magnetic lamination is coupled with a scalar Preisach model and with an electric circuit comprising an air gap and an equivalent capacitance associated with the converter, power cable and phase winding. A good correspondence is obtained between simulated and measured time-domain resonance waveforms. The model is used to predict the impact of hysteresis on the initial position estimation at start-up of the drive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.