Abstract

Germ cell development in mice is initiated when a small number of primordial germ cells (PGCs) are set aside from somatic cells during gastrulation. In the subsequent 4 to 5 days, PGCs enter the hindgut, undergo a directed migration away from the hindgut into the developing gonads, and undergo a massive increase in cell number. It is well established that Kit ligand (KITL, also known as stem cell factor and mast cell growth factor) is required for the survival and proliferation of PGCs. However, there is little information on a direct role for KITL in PGC migration. By comparing the effects of multiple Kitl mutations, including two N-ethyl-N-nitrosourea-induced hypomorphic mutations, we were able to distinguish stages of PGC development that are preferentially affected by certain mutations. We provide evidence that the requirements for KITL in proliferation are different in PGCs before and after they start migrating, and different levels of KITL function are required to support PGC proliferation and migration. This study illustrates the usefulness of an allelic series of mutations to dissect developmental processes and suggests that these mutants may be useful for further studies of molecular mechanisms of KITL functions in gametogenesis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call