Abstract

The assembly of amelogenin protein into nanospheres is postulated to be a key factor in the stability of enamel extracellular matrix framework, which provides the scaffolding for the initial enamel apatite crystals to nucleate and grow. Adsorption isotherms were evaluated in order to investigate the nature of interactions of amelogenin nanospheres with hydroxyapaite crystals in solution, where their assembly status and particle size distribution are defined. We report that the adsorption isotherm of a recombinant mouse amelogenin (rM179) on synthetic hydroxyapatite crystals can be described using a Langmuir model indicating that amelogenin nanospheres adsorb onto the surface of apatite crystals as binding units with defined adsorption sites. The adsorption affinity and the maximum adsorption sites were 19.7 x 10(5) L/mol and 6.09 x 10(-7) mol/m2, respectively, with an r2 value of 0.99. Knowing the composition and particle size distribution of amelogenin nanospheres under the condition of adsorption experiments, we have calculated the number of nanospheres and the crystal surface area covered by each population of nanospheres at their maximum adsorption. It was found that total maximum binding covers 64% of the area unit. This observation supports the speculation that amelogenin binding onto apatite surface is selective and occurs only at certain sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.