Abstract

The availability of good quality groundwater constitutes a major concern in many developing countries. The El Fahs shallow aquifer, northeastern Tunisia, is an important source of water supply for various economic sectors in the agricultural region. The intensive exploitation of this groundwater has led to its quality degradation. In fact, assessment of water quality degradation is very useful in planning the conservation and management practices of water resources in this watershed. This research aims to evaluate the groundwater quality and its suitability for irrigation uses, identify the main processes to assess their chemical composition, and investigate the potential sources of persistent organic pollutants (POPs). The hydrogeochemical investigation is thus conducted by collecting groundwater samples and analyzing their physicochemical characteristics. Polycyclic aromatic hydrocarbons (16 PAHs) and polychlorinated biphenyls (7 PCBs) were determined in groundwaters from nine stations. The sampling took place in July 2020. The relative abundance of ions was Na > Mg > Ca > K for cations and Cl > SO4 > HCO3 for anions. The groundwater exhibits two predominant hydrochemical facies: Ca-Mg-Cl/SO4 and Na-Cl. The relevant recorded pollutant is nitrate, which was generally far above values of pollution thresholds indicating the influence by the intensive agricultural activity. The suitability for irrigation purposes was assessed using several parameters (EC, SAR, %Na, TH, PI, Mh, and Kr). As a matter of fact, the results mentioned that the majority of the samples are unsuitable for irrigation uses. An analysis of the organic pollutants indicates that the total PAH and PCB concentrations are above the permissible values. Therefore, a considerable predominance of naphthalene and PCB28 was observed in order to discriminate between pyrolitic and petrogenic PAH sources; low-molecular-weight (LPAH)/high-molecular-weight (HPAH) ratio was calculated. Results showed that PAHs were mainly of petrogenic origin. The results revealed also that the chemical composition of groundwater is influenced by evaporation process, ion exchange, and water-rock interaction during the flow. A high risk of organic contamination has been highlighted linked to anthropogenic activities which have exerted increasing pressure on groundwater quality. The presence of organic pollutants in groundwater is becoming a serious threat to the environment and human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call