Abstract

Disparity vergence is commonly viewed as being controlled by at least two mechanisms, an open-loop vergence-specific burst mechanism analogous to the ballistic drive of saccades, and a closed-loop feedback mechanism controlled by the disparity error. We show that human vergence dynamics for disparity jumps of a large textured field have a typical time course consistent with predominant control by the open-loop vergence-specific burst mechanism, although various subgroups of the population show radically different vergence behaviors. Some individuals show markedly slow divergence responses, others slow convergence responses, others slow responses in both vergence directions, implying that the two vergence directions have separate control mechanisms. The faster time courses usually had time-symmetric velocity waveforms implying open-loop burst control, while the slow response waveforms were usually time-asymmetric implying closed-loop feedback control. A further type of behavior seen in a distinct subpopulation was a compound anomalous divergence response consisting of an initial convergence movement followed by a large corrective divergence movement with time courses implying closed-loop feedback control. This analysis of the variety of human vergence responses thus contributes substantially to the understanding of the oculomotor control mechanisms underlying the generation of vergence movements [corrected].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.